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Abstract: The Laplacian of the electronic charge distribution demonstrates the presence of local concentrations of charge 
in the valence shell of an atom in a molecule. These local maxima faithfully duplicate in number, location, and size the spatially 
localized electron pairs of the VSEPR model. Thus the Laplacian of the charge density provides a physical basis for the Lewis 
and VSEPR models. This paper shows that the arrangement of the local charge concentrations within the valence shell of 
an atom is a consequence of the partial condensation of the valence electrons into pairs. This condensation is caused by a 
corresponding spatial localization of the Fermi hole. Such localization arises from the ligand field operating in concert with 
the Pauli exclusion principle. The VSEPR model is now reduced to a single postulate, namely, that the most stable molecular 
geometry of a molecule AX„ corresponds to maximizing the separations between the local maxima in the valence shell of charge 
concentration of the atom A as defined by the Laplacian of the charge density. 

1. Introduction 
The valence-shell electron pair repulsion (VSEPR) model,1 

which is a natural extension of the electron pair model of Lewis,2 

has become the most successful and widely used model for the 
prediction of geometries of closed-shell molecules. The VSEPR 
model has two basic assumptions: (1) the valence charge density 
is spatially localized into pairs of electrons, and (2) The geometrical 
arrangement of the ligands about an atom is that which maximizes 
the interpair separation, for both the bonded and nonbonded pairs. 
The Laplacian of the electronic charge density, the quantity V2p, 
exhibits extrema which indicate the presence of localized con­
centrations of electronic charge in the valence shell of an atom 
in a molecule. These local charge concentrations duplicate in 
number, location, and size the spatially localized electron pairs 
of the VSEPR model.3 So faithful is the mapping of the number 
and properties of the localized electron pairs assumed in the 
VSEPR model onto the number and properties of the local maxima 
found in the valence-shell charge concentration (VSCC) of the 
central atom,3 that one can conclude that the Laplacian of the 
charge density provides the physical basis for the Lewis and 
VSEPR models. One cannot, however, equate the existence of 
the local charge concentrations in the Laplacian distribution with 
the actual existence of the localized electron pairs assumed in the 
model, particularly since it has been previously demonstrated that 
the valence electrons in a molecule are, in general, not spatially 
localized into pairs.4 

This paper is concerned with the origin of the local charge 
concentrations in the valence shell of the central atom. It is shown 
that they are a consequence of the partial condensation of the 
valence electrons into pairs as a result of the spatial localization 
of the Fermi hole. This localization results from the ligand field 
operating in concert with the Pauli exclusion principle. Hence 
the properties of the Laplacian of the charge density serve as a 
bridge linking the electron pairing effect of the Pauli exclusion 
principle with the corresponding assumption of the VSEPR model. 

2. The VSEPR Model and the Properties of the VSCC 
The Valence-Shell Charge Concentration. The Laplacian of a 

scalar field, such as the electronic charge density, has the important 
property of determining where the field is locally concentrated5 

(where V2p < 0) and where it is locally depleted (where V2p > 
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0). We review here very briefly the properties of the Laplacian 
of the electronic charge density in order to define the valence-shell 
charge concentration (VSCC) and illustrate its relation to the 
Lewis model of electron pairs. The structure of the Laplacian 
distribution in an atom reflects its shell structure, there being a 
shell of charge concentration and one of charge depletion asso­
ciated with each quantum shell with the innermost region being 
a spike-like maximum in charge concentration.6""8 Since electronic 
charge is concentrated where V2p < 0, it is more convenient to 
work with the function -V2p, a maximum in this function being 
a maximum in charge concentration. It is important to recall that 
the charge density itself does not exhibit a shell structure, as p 
decays monotonically in all directions away from a nucleus. The 
radial distribution function for an atom, obtained through an 
integration of p over its two angular coordinates, is a one-di­
mensional function giving the probability of finding electronic 
charge in the volume of the infinitesimal shell lying between two 
concentric spheres of radii r and r + dr. The maxima observed 
in such a distribution determine values of r at which one is most 
likely to find electronic charge averaged over all spatial angles, 
but the actual distribution of charge in three-dimensional space 
does not exhibit a maximum at the corresponding value of r. The 
Laplacian distribution, on the other hand, exhibits shell structure 
in real space not only for an isolated atom, but also for an atom 
in a molecule. 

The portion of the outer quantum shell over which -V2p > 0 
is called the valence-shell charge concentration or VSCC. Within 
this shell is a sphere over whose surface electronic charge is 
maximally and uniformly concentrated. In general, this surface 
persists when the atom is in chemical combination, but the sphere 
is distorted and is no longer of uniform concentration because of 
the formation of local maxima, minima, and saddles on its surface.9 

It has been amply demonstrated,3,10"13 and new examples are given 

(6) Bader, R. F. W.; Beddall, P. M. J. Chem. Phys. 1972, 56, 3320. 
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1988,88, 4367. The number of shells defined in this manner by the Laplacian 
of the charge density or in terms of the number of maxima in the radial 
distribution function can be less than the principal quantum number for 
elements with Z > 40. 

(9) An extremum in -V1P, a point where V(-V2p) = 0, is called a critical 
point. If all three principal curvatures of (-V2p) are negative at such a point, 
-V2p is a maximum there and the point is labeled as (3, -3). The radial 
curvature at a critical point on the surface of the sphere of charge concen­
tration is negative. If one of the remaining curvatures is negative and the other 
positive, the point is labeled as (3, -1), while if both remaining curvatures are 
positive, it is labeled as (3, +1). A two-dimensional display of a (3, -1) critical 
point in a plane containing the two negative curvatures has the appearance 
of a maximum. A two-dimensional display of a (3, -1) or a (3, +1) critical 
point in a plane containing one positive and one negative curvature has the 
appearance of a saddle. A two-dimensional display of a (3, +1) critical point 
in a plane containing two positive curvatures has the appearance of a mini­
mum. 
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Table I. Bonded and Nonbonded Charge Concentrations on Cl in ClF3O 

geometry" 

n I ' 0 V 

F. r l 
F . 

n 
F«-J ~Ct — F. 

0 

C $v 

net atomic 
charges,' e 

Cl, +2.859 
0,-1.118 
F„ -0.547 
F„ -0.597 

Cl, +2.790 
0, -1 .134 
Fe, -0.552 

type 

n 
bo 
be 
b. 

n 
bo 
b. 

' a . A 

0.600 
0.648 
0.668 
0.682 

0.602 
0.655 
0.650 

properties 

V2p(rc) 

1.832 
1.060 
0.646 
0.414 

1.633 
1.066 
0.420 

of charge concentrations in VSCC of CF 

size, A2 

1.48 
1.33 
0.70 
0.41 

1.59 
1.46 
0.50 

intermaxima angles, deg 

nClb0 = 138.6, nClba = 89.5 
nClbe = 116.5, b0Clba = 97.0 
b0Clbe = 104.9, beClba = 81.2 

nClbe = 80.9, beClbe = 117.5 
b0Clbe = 99.1, nClb0 = 180.0 

0C8 geometry: R(Cl-O) = 1.4184, /?(C1-Fa) = 1.6372, R(Cl-?,) = 1.5591, Z(OClF0) = 110.13, Z(OClF3) = 95.15, Z(FeClFa) = 84.72, all in A 
and degrees, £(HF) = -831.774983 hartrees. C30 geometry: R(Cl-O) = 1.4024, /J(Cl-F5) = 1.6604, Z(F5ClO) = 93.78, all in A and degrees, 
.E(HF) = -831.698 421 hartrees. *The population of atom Q in a molecule, N(Q), is obtained by integration of p over the basin of the atom. The 
corresponding net charge is q(Q) = Zn- N(Q), where Zn is the nuclear charge. 'The first column gives the radial distance of the maximum of charge 
concentration from the Cl nucleus. The next column gives the value of -V2p (in au) at this maximum, or (3, -3) critical point. 

here, that the local maxima that are created within the VSCC 
of a bonded atom provide a mapping of the bonding and non-
bonding electron pairs of the Lewis and VSEPR models. 

The Laplacian of the charge density plays a central role in the 
theory of atoms in molecules,7,14 where it appears as an energy 
density, that is, as the quantity (-h2/4m)V2p(r). It appears in 
this form in the local expression for the virial theorem, and, as 
a consequence, one can show that in regions of space where the 
Laplacian is negative and electronic charge is concentrated, the 
potential energy dominates both the local total energy and the 
local virial relationship. In general, the more negative the value 
of the Laplacian over some region of space, the greater is the 
contribution of the electronic charge in that region to the total 
energy of the system. 

A Physical Basis for the VSEPR Model. It has been shown 
that the assumptions made in the VSEPR model of the presence 
of spatially localized pairs of electrons, in particular geometrical 
arrangements in the valence shell of the central atom, and of the 
properties ascribed to these bonding and nonbonding pairs, are 
recovered in the properties of the local maxima in the VSCC of 
the central atom.3 The spherical surface on which the electron 
pairs are assumed to be localized in the VSEPR model is identified 
with the sphere of maximum charge concentration in the VSCC 
of the central atom, and the localized pairs of electrons are 
identified with the local maxima on this sphere of maximum 
charge concentration. The relative positions of these local maxima 
are determined by the coordinates of the corresponding (3,-3) 
critical points in -V2p. A bonded charge maximum is distin­
guished from a nonbonded one by virtue of its occurrence on a 
bond path linking neighboring nuclei. 

The VSCC of the central atom in each of the molecules CH4, 
NH3, and OH2 possesses four local maxima.3 A nonbonded charge 
concentration is of larger magnitude and occupies a larger fraction 
of the surface of charge concentration than does a bonded charge 
concentration. Consequently, the angle subtended by two non-
bonded charge concentrations is larger than that subtended by 
two bonded concentrations in an equilibrium geometry.3 These 
results confirm that the maxima in the VSCC of the central atom 
recover the most important of the subsidiary postulates of the 
VSEPR model, namely, that nonbonding or lone pairs have larger 
domains than bonding pairs in the same valence shell. Another 
subsidiary postulate of the VSEPR model, previously illustrated, 
is that the domain of a bonded pair in the valence shell of the 
central atom decreases (increases) in size as the ligand becomes 

more (less) electronegative. The size of a local maximum in -V2p 
is determined by the area it covers on the surface of the sphere 
of charge concentration.3 The final subsidiary postulate of the 
VSEPR model is that double- and triple-bond domains which are 
composed of two and three electron pairs, respectively, are larger 
than single-bond electron pair domains. This postulate can be 
illustrated using the sizes of the C-C bonded maxima in ethane, 
ethylene, and acetylene which, expressed in terms of surface areas, 
are 0.62, 1.24, and 1.97 A2, respectively. By including the size 
of a nonbonded charge concentration in the VSCC of carbon in 
singlet methylene which is 0.94 A2, one establishes that for carbon, 
a double bond charge concentration occupies a larger fraction of 
the VSCC than does a nonbonded one. The same is true for sulfur 
in SO2 where the size of the nonbonded charge maximum is 1.56 
A2 while the size of the double bond charge maximum is 1.82 A2. 

Examples of systems in which the VSCC of the central atom 
contains five maxima3 (ClF3, SF4 and SF4O), six maxima3 (ClF5), 
and seven maxima15 (ClF6") have also been reported in detail. It 
was also shown using these examples that forcing a system into 
a nonequilibrium geometry resulted in smaller angles between 
nonbonded charge concentrations, or between a bonded and a 
nonbonded charge concentration as predicted by the VSEPR 
model. The properties of the VSCC of the Cl atom in the ClF3O 
system are reported here to further illustrate these same features 
of the VSEPR model and relate them to the new developments 
regarding the partial condensation of the valence electrons. This 
molecule allows for a comparison of the charge concentrations 
associated with singly bonded, doubly bonded, and nonbonded pairs 
of electrons. 

The Laplacian Distribution of QF3O. Single determinant SCF 
calculations using the 6-2IG* basis set have been carried out for 
the ClF3O system.16 The optimized geometry, of C1 symmetry, 
is derived from that of a distorted trigonal bipyramid (see Table 
I). This geometry is as predicted by the VSEPR model. The 
largest of the electron pair domains (the lone pair on Cl and the 
doubly bonded pairs to O) occupy the less crowded equatorial sites 
while the smallest (bonded pair to F) occupy the more crowded 
axial sites. The energy, geometrical parameters, and atomic 
charges are given in Table I. The axial and equatorial fluorines 
are denoted by Fa and F6, respectively. As predicted by the 
VSEPR model, the Cl-Fa bonds are longer than the Cl-F6 bond 
as a consequence of the more crowded nature of the axial positions. 
The F6ClO angle is less than 120° which, according to the model, 
implies that the domain of the nonbonded pair on Cl is larger than 

(10) Bader, R. F. W.; MacDougall, P. J. J. Am. Chem. Soc. 1985, 107, 
6788. 

(11) Tang, T. H.; Bader, R. F. W.; MacDougall, P. J. Inorg. Chem. 1985, 
24, 2047. 

(12) Carroll, M. T.; Chang, C; Bader, R. F. W. MoI. Phys. 1988, 63, 387. 
(13) MacDougall, P. J.; Bader, R. F. W. Can. J. Chem. 1986, 64, 1496. 
(14) Bader, R. F. W.; Nguyen-Dang, T. T. Adv. Quantum Chem. 1981, 

14, 63. 

(15) MacDougall, P. J. Inorg. Chem. 1986, 25, 4400. 
(16) Calculations performed using Gaussian 82: Binkley, J. J.; Frisch, M. 

J.; DeFrees, D. J.; Ragavachari, K.; Whiteside, R. A.; Schlegel, H. B.; Fluder, 
E. M.; Pople, J. A. Gaussian 82, Carnegie-Mellon University Publication Unit, 
Pittsburgh, PA, 1983. The 6-2IG* basis set contained in this program has 
d functions on all atoms other than hydrogen. The previously reported cal­
culations3 using the 6-21G* set were obtained using Gaussian 80. In this 
program d functions are placed only on the third-row atoms. 
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that for the two pairs in the double bond to oxygen. The FaClFa 
angle is 170° and these fluorines are bent away from the oxygen 
atom and displaced slightly toward the equatorial fluorine, the 
F8ClO and FaClFe angles equaling 91.7 and 84.7°, respectively. 
The C3„ geometry, which results when all three fluorines are 
equivalent and occupy the equatorial plane and the larger domains 
associated with the oxygen double bond and the Cl nonbonded 
pair occupy the axial positions, should, according to the VSEPR 
model, be of higher energy (see Table I). An SCF calculation 
constrained to yield this symmetry gives the geometrical param­
eters listed in Table I. It predicts the energy of the C30 geometry 
to be 48.0 kcal/mol greater than that of the optimized geometry. 
The plane of the fluorine atoms is displaced below the Cl nucleus 
to give an FClO angle of 93.8°. In the equilibrium geometry the 
axial fluorines, in addition to having a slightly longer bond length 
than the equatorial fluorine, also possess a greater negative charge. 
These charges are in accord with the VSEPR prediction that the 
ligands in the axial positions, which are the most crowded positions, 
should have the largest negative charges. The charges on the 
fluorine atoms in the higher energy geometry are intermediate 
in value, being slightly greater than that for the equatorial fluorine 
in the C1 geometry. The chlorine and oxygen atoms bear sub­
stantial positive and negative charges respectively in both geom­
etries. 

The properties of the maxima, both bonded and nonbonded, 
derived from the VSCC of the Cl atom are listed in Table I, and 
the Laplacian distributions for the two geometries are illustrated 
in Figure I.17 The VSCC of the Cl atom in the equilibrium 
geometry exhibits the anticipated five maxima: a bonded charge 
concentration for each of the axial fluorines, a slightly larger 
bonded charge concentration for the less electronegative equatorial 
fluorine, a still larger one for the doubly bonded oxygen, and a 
nonbonded charge concentration which is largest of all. This 
ordering according to size refers to both the magnitude of the 
Laplacian at the maxima and the areas they cover on the surface 
of charge concentration. The relief map for the equatorial plane 
illustrates the relative sizes of the local charge concentrations 
corresponding to the nonbonded, doubly bonded, and singly bonded 
electron pairs. The critical points for the bonded maxima for the 
oxygen and the equatorial and axial fluorines are referred to as 
b0, be, and ba, respectively, and the nonbonded maximum as n. 
As anticipated on the basis of the relative sizes of the n and b0 
maxima, the nClbe angle is greater than the b0Clbe angle, a result, 
which according to the VSEPR model, accounts for the fact that 
the OClFe bond angle is less than 120°. The relative values of 
the angles are also reflected in the result that the angle b0Clba 
is greater than the angle nClba. The dominant size of the non-
bonded pair determines the bond angle in the equatorial plane, 
but is not the deciding factor in determining the relative dis­
placement of the axial fluorines away from the oxygen. This final 
element of geometry, and the corresponding observation that the 
equatorial fluorines are displaced away from the oxygen in the 
C3„ geometry, can be rationalized by assigning stereochemical 
activity to the nonbonded electrons on the ligands. The VSCC 
of the oxygen atom in the C1 geometry does indeed possess two 

(17) There is no direct constraint on the topology of the Laplacian within 
the atomic basin of a bound atom or even a requirement that the VSCC must 
persist on bonding, or remain within the atomic surface of the given atom. 
Thus, an atom which loses most of its valence charge density on bonding, as 
Li does in many of its compounds, does not possess a VSCC in its bonded 
form.10 In the present example, the VSCC initially associated with a free Cl 
atom is shared with its more electronegative bonded neighbors. For a bond 
between identical atoms and for polar bonds between dissimilar atoms, there 
are, in general, two bonded maxima, one associated with each atom. Thus 
a single bonded pair of the Lewis model is represented by two bonded maxima, 
one in each VSCC. An example of a polar bond with two bonded maxima 
is provided by the Cl-O bond in the C1 geometry (Figure 1). In situations 
of more extreme charge transfer, only a single bonded maximum may be found 
in the VSCC of the more electronegative atom. It appears that fluorine is 
unique in its behavior. The charge density of a fluorine atom is tightly bound 
and very localized in all of its compounds4 with the result that its VSCC 
exhibits only a torus of nonbonded charge encircling the bond axis and no 
bonded charge concentration, not even in F2.

7 Only in HF has the VSCC of 
fluorine been found to exhibit a bonded maximum. 

nonbonded charge concentrations which lie on either side of the 
equatorial plane. In the C3i) geometry the VSCC of oxygen has 
three nonbonded maxima which are staggered with respect to the 
bonded maxima to the three equatorial fluorines. 

The magnitude of the nonbonded maximum on Cl in the C3v 
geometry is decreased from its value in the equilibrium geometry 
while the magnitude of the oxygen bonded maximum remains 
nearly unchanged. However, the sizes of both these maxima 
increase over their values in the equilibrium geometry. The 
maxima of the three equivalent fluorines and their sizes are de­
creased considerably in value from those found for the single 
equatorial F in the Cs geometry, a result of their increased 
crowding from the maxima associated with the lone pair and the 
oxygen atom. Figure 1 illustrates that this crowding is particularly 
severe with the lone pair maximum which nearly envelopes the 
equatorial bonded maxima. The postulates of the VSEPR model 
are quantitatively satisfied if one identifies the localized electron 
pairs of the model with the bonded and nonbonded charge con­
centrations of the Laplacian and predicts the most stable geometry 
to be that which maximizes the separations between these local 
charge concentrations. The angles formed by the bonded maxima 
of the three fluorines with the nonbonded charge concentration 
decrease from 90, 90, and 117° in the equilibrium geometry to 
a value of 86° for all three in the less stable C31, geometry. 
Similarly, the angles these same bonded maxima make with the 
double bond maxima decrease from 95, 95, and 105° to a common 
value of 94° in the C3v geometry. 

The many examples that have been so far reported demonstrate 
a remarkable mapping of the number and properties of the 
localized electron pairs assumed in the VSEPR model of molecular 
geometry onto the number and properties of the local maxima 
found in the VSCC of an atom as determined by the Laplacian 
of the electronic charge distribution. The question to be answered 
next is why the Laplacian exhibits local concentrations of electronic 
charge where the VSEPR model assumes electron pairs to be? 

3. Electron Localization and Local Maxima in the VSCC 
Are Electrons Localized in Pairs? The concept of the localized 

electron pair has been a central theme in the development of 
bonding theories since Lewis2 first postulated that a chemical bond 
was a consequence of a shared electron pair. However, the total 
electron density distribution in a molecule shows no indication 
of discrete bonding or nonbonding electron pairs. The principal 
topological property of the charge density of a many-electron 
system is that, in general, it exhibits local maxima only at the 
positions of nuclei.18,19 When one sums the individual orbital 
densities in the determination of the total charge density, all 
suggestions of spatially localized patterns of charge and the as­
sociated nodes disappear to yield the relatively simple topology 
exhibited by the total charge density p. While this topology 
provides a faithful mapping of the concepts of atoms, bonds, and 
structure,18,20 it does not provide any indication of the maxima 
in a charge distribution which would correspond to the spatially 
localized pairs of bonded and nonbonded electrons as anticipated 
on the basis of the VSEPR model. 

The concept of a localized electron pair implies that there exists 
a region of real space in which there is a high probability of finding 
two electrons of opposite spin and for which there is a corre­
spondingly small probability of exchange of these electrons with 
the electrons in other regions. Such physical localization of charge 
is a direct result of the operation of the Pauli exclusion principle 
as it affects the pair distribution function for electrons.4 The 
charge density P(Z1), the density of electrons at ru is given by N 
times the probability of finding one electron at rx. Its integral 
over the coordinates of one electron gives iV, the total number of 
electrons. Similarly, the pair density p(rhr2), the density of pairs 
of electrons with coordinates /-, and r2, is given by N(N - l)/2 

(18) Bader, R. F. W.; Nguyen-Dang, T. T.; TaI, Y. Rep. Prog. Phys. 1981, 
44, 893. 

(19) Cao, W. L.; Gatti, C ; MacDougall, P. J.; Bader, R. F. W. Chem. 
Phys. Lett. 1987, 141, 380. 

(20) Bader, R. F. W. Ace. Chem. Res. 1985, 18, 9. 
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Figure 1. Contour and relief maps of lhe Laplacian distribution for CIF3O. The relief maps are a display of -V2p and negative contours are denoted 
by dashed lines. Maxima in -V2p arc denoted by dots and their values are given in Table I. The I.aplacian exhibits three quantum shells for Cl and 
two for F and for O. The upper diagram is for a plane containing the nuclei of the O. Cl. and Fe atoms in the equilibrium geometry. The VSCC of 
Cl exhibits three maxima of decreasing size and magnitude, nonbonded. bonded to O, and bonded to Fe. The lower diagram is for a plane showing 
the axial oxygen and nonbonded maximum and one of the three equivalent equatorial F atoms in the C^- geometry. The bonded maximum of an equatorial 
F is severely crowded by the nonbonded maximum in this geometry. 

times the probability that one electron is at r, when the other is 
at r2. Its integral over the coordinates of both electrons gives N(N 
- 1 ) /2 , the total number of distinct pairs of electrons. The an­
tisymmetry requirement of the Pauli principle is imposed on the 
pair density through the introduction of the so-called Fermi hole. 
The theoretical development of the effect which the resulting Fermi 
correlation has on the pair distribution function has been previously 
given.4 We give here a qualitative discussion of how the operation 
of the Pauli exclusion principle can lead to the localization of pairs 
of electrons just as is assumed in the VSEPR model, but follow 
this with a demonstration that the requirements for achieving 
localization are, in general, not met. 

As an electron moves through space, it carries with it a 
doppelganger. its Fermi hole. The Fermi hole is a distribution 
function defined relative to an uncorrclatcd pair density which 
determines the decrease in the probability of finding an electron 
with the same spin as some reference electron, relative to a given 
position of the reference electron. The orbital expression for the 
Fermi hole is given in the Appendix. Its magnitude at the position 
of an a (or 0) reference electron equals the total density of « (or 
0) electrons at that point, thereby ensuring that there is a zero 
probability of finding another a (or 0) electron at the position 
of the reference electron. The Fermi hole, when integrated over 
all space for a fixed position of the reference electron, corresponds 
to the removal of one electronic charge of identical spin. One may 
equally interpret the Fermi hole as a distribution function whose 

magnitude describes the spatial derealization of the charge of 
the reference electron. An electron can go only where its hole 
goes, and if the Fermi hole is localized, then so is the electron. 

Consider an electron of a spin in the proximity of a nucleus. 
Because the electron is tightly bound in a deep potential well, its 
Fermi hole is strongly localized in the immediate vicinity of the 
nucleus. If the Fermi hole is localized so as to equal -p" , the 
negative of the total density of « electrons, at every point over 
this region of space, then all other electrons of a spin are excluded 
from the potential well. The same result will be obtained for an 
electron of 0 spin, and, as a consequence, a pair of electrons is 
confined to a region of space from which all other electrons of 
both a and 0 spin arc excluded. Thus Fermi correlation does not 
act directly to "pair up" electrons. Rather, since there is no Fermi 
correlation between electrons of opposite spin, an a,0 pair is 
obtained as a result of all other electrons of both « and 0 spin 
being excluded from a given region of space in which they arc 
both bound by some attractive force. Repulsions between the 
electrons act in opposition to this effect, and one finds that the 
long-range nature of the Coulomb force disrupts and limits the 
localization of charge. 

The perfect localization of a pair of electrons to some domain 
SJ as described above requires the total removal of one electronic 
charge within S2 (that is, the Fermi hole is totally contained within 
U) for every position of the reference electron within the region. 
The total Fermi correlation contained in a domain Si. a quantity 
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denoted by F(Q1Q), is obtained by a double integration of the 
Fermi hole weighted by pa; one integrates the hole density over 
the domain for a given position of the reference electron and then 
repeats this for every position of the reference electron in the same 
domain. For perfect localization of a pair of electrons to a region 
Q, F(Q,Q) integrates to -2 , corresponding to the removal of one 
a and one /3 electron. Thus, the ratio \F(Q,Q)\/N(Q) is a measure 
of the fraction of the Fermi correlation required for complete 
localization of the N(Q) electrons to the domain Q. Complete 
localization of a pair of electrons is possible only in the limit of 
their complete isolation. However, one finds Is core regions of 
atoms which approach this limiting situation. In these cases it 
is possible to find a spherical boundary such that the contained 
Fermi correlation is found to be maximized for an average pop­
ulation of two, with values ranging from to 96% in Li to 73% in 
Ar of that required for complete localization of the pair. As shown 
previously, maximizing the Fermi correlation is equivalent to 
minimizing the fluctuation in the average population of the 
contained charge. In these cases where the domain of localization 
is defined by extremization of the pertinent physical parameters, 
it is meaningful to refer to the electrons as being physically 
localized.4 Correspondingly, the Laplacian of the charge density 
attains its most negative values for this region of space in an atom 
and thus contributes maximally to the lowering of the potential 
energy. 

Such physically localized pairs of electrons are found in a few 
simple hydrides such as LiH, BeH2, and BH3 in which there are, 
in addition to the pair of core electrons, one, two, and three pairs 
of electrons 96, 93, and 82% localized on the protons, respectively. 
These are the same systems which possess localized electron pairs 
according to Daudel's loge theory.21 In the remaining second-row 
hydrides CH4 to HF, however, where the bonding density is evenly 
shared between A and H, or strongly polarized toward A, bounded 
regions which maximize the contained Fermi correlation do not 
exist and the electrons are not physically localized into pairs.4,22 

As previously demonstrated,4 the orbital requirement for 
physical localization of electron pairs is not that a set of orbitals 
be localized, but that each orbital be localized to its own separate 
region of space. Such separate localization is apparent even in 
the canonical set of orbitals for the same hydride molecules, LiH, 
BeH2, and BH3, which as noted above exhibit localization of 
electron pairs. Localized orbitals are in general, however, not that 
localized and they are not localized to separate regions of space.23 

A physically localized pair of electrons is maximally isolated 
from the remainder of the system in that their exchange and all 
of their correlative interactions with the remainder of the system 
are minimized. Hence the degree of physical localization as 
determined by the properties of the Fermi correlation parallels 
the relative importance of the intra- and interpair correlation 
energies as determined by various "correlated pair" theories. In 
LiH, BeH2, and BH3,

24'25 for example, intrapair correlation ac­
counts respectively, for over 90, 86, and 77% of the total correlation 
energy, for which the corresponding Fermi localizations are 96, 
93 and 82%. As pointed out by Davidson,26 Sinanoglu and 
Skutnik,27 and Kutzelnigg,25 this is not the general result, and in 
molecules such as CH4 and NH, the intrapair correlation con­
tribution to the total correlation energy drops to 56 and 20%, 
respectively. The study of the localizability of the Fermi corre­
lation and the related fluctuation in the average electron popu­
lation, of the relative importance of the intra- and interpair 

(21) Daudel, R.; Bader, R. F. W.; Stephens, M. E. Can. J. Chem. 1974, 
52, 1310. 

(22) While the valence charge distribution of an atom is, in general, not 
localized into separate pairs, the total charge distribution of an atom can 
exhibit significant localization. The percentage localization of some average 
number of electron pairs within the zero flux atomic surface20 ranges from 
65% for C, to 75% for N, to 88% for O, and to 95% for F. 

(23) Daudel, R.; Stephens, M. E.; Kapuy, E.; Kozmutza, C. Chem. Phys. 
Lett. 1976, 40, 194. 

(24) Ebbing, D. D.; Henderson, R. C. J. Chem. Phys. 1965, 42, 2225. 
(25) Kutzelnigg, W. Fortschr. Chem. Forsch. 1973, 41,31. 
(26) Davidson, E. R. Rev. Mod. Phys. 1972, 44, 451. 
(27) Sinanoglu, 0.; Skutnik, B. Chem. Phys. Lett. 1968, /, 699. 

Figure 2. Contour maps of the Fermi hole density in methane for various 
positions of the reference electron, as indicated by a star. Each map is 
for a plane containing the carbon and two hydrogen nuclei as labeled in 
map b. The contours used in this and the following figures are in atomic 
units and decrease in value from the outermost contour inward in steps 
of -2 X 10", -4 X 10", and -8 X 10" with n beginning at -3 and in­
creasing in steps of unity, (a) Reference electron, 0.35 au from C nu­
cleus, is within the localized core of radius 0.53 au. (b) Reference 
electron is at position of bonded maximum in VSCC of carbon, 1.02 au 
from nucleus, (c) Reference electron is 0.69 au from nucleus. The Fermi 
density is a maximum at the C nucleus and is less localized in the valence 
region of the C-H bond than in map b. (d) Reference electron is 1.28 
au from C nucleus. The area within the inner (0.08 au) C-H "bond" 
contour is decreased relative to map b and more density is placed within 
the core and nonbonded regions, (e) Reference electron is moved off 
bonded maximum toward second proton. It is 0.99 au from nucleus and 
still within neighborhood of bonded maximum. Map e is essentially 
unchanged from map b. (f) Reference electron, at same distance from 
nucleus as in map e, is moved further, to a point on boundary of two 
bonded regions. This map represents the maximum possible delocaliza-
tion of the Fermi hole for this distance of the reference electron from the 
C nucleus. 

contributions to the total correlation energy, and of the degree 
of the separate localizability of orbitals, all provide similar in­
formation and all indicate that, in general, the physics of a 
many-electron system is not dominated by the behavior and 
properties of individual electron pairs. There is, however, partial 
localization of the pair density, and it is this partial localization 
acting in concert with the ligand field that is responsible for the 
appearance of local charge concentrations in the valence shell of 
the central atom. 

Local Charge Concentrations and Localization of the Fermi 
Hole. It is demonstrated through a study of the Fermi hole density 
that the local decrease in the potential resulting from the approach 
of each ligand to the central atom results in a corresponding partial 
condensation of the pair density to yield patterns of localization 
as anticipated by the VSEPR model. This results in corresponding 
patterns of charge concentrations and accompanying decreases 
in the local potential energy for both the bonded and nonbonded 
charge concentrations. 

The properties of the Fermi hole for a physically localized pair 
of electrons is illustrated by the core electrons in methane. In 
this molecule, a sphere of radius 0.53 au centered on the carbon 
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nucleus defines a region of space which maximizes the contained 
Fermi correlation to yield a pair of electrons which are 88% 
localized.4 The localized nature of the Fermi hole is illustrated 
in Figure 2. In spite of the unsymmetrical position of the reference 
electron, the hole is nearly symmetrical with respect to the nucleus, 
and it corresponds closely to a plot of the a density distribution 
in the region of the core. With the exception of the contours of 
very low value extending out to the proton, this plot remains 
essentially unchanged for any position of the reference electron 
within this localized core region. Thus the core region is maximally 
isolated from the remainder of the system. The fluctuation in 
its average population of two is minimized, as is the exchange of 
its electrons with those in the remainder of the system. 

While there is localization into shells in a free atom as is 
reflected in the Laplacian distribution as well, there is no possibility 
of defining localized pairs within the L or M shells, as the Fermi 
hole for each electron is spread over its respective shell. It has 
already been noted that the uniformity of the outer shell of charge 
concentration is disrupted with the approach of ligands to the 
central atom with the resultant formation of local concentrations 
of charge. The formation of bonded charge maxima in the VSCC 
of the central atom is understandable in view of a decrease in the 
electron-nuclear potential in each of the resulting internuclear 
regions of the molecule. However, the decrease in potential is, 
in general, not sufficient to condense the Fermi hole of a single 
electron to a degree sufficient to localize a pair of electrons from 
the remainder of the system as is found for the core region of an 
atom. This situation is also illustrated for the methane molecule. 
While it is not possible to define a valence region which maximizes 
the contained Fermi correlation in this molecule, the division of 
space excluding the core into four equivalent bonded domains does 
represent the best partitioning of its valence space in that it 
minimizes the sum of the fluctuations in the populations of the 
individual regions.4 The pair of electrons in each such bonded 
region is 69% localized. It appears from many examples that it 
is not possible to maximize the contained Fermi correlation for 
a region of space containing on the average a pair of electrons 
when the total Fermi correlation falls below 70%. The diffuse 
nature of the Fermi hole in the valence region of this molecule 
which prevents the physical localization of a pair of electrons is 
illustrated in Figure 2 for a reference electron located at the 
bonded maximum in the VSCC of carbon. This hole is much less 
localized than that for the core electrons, extending into the 
nonbonding region as well. Its shape remains insensitive to the 
position of the reference electron only for motion of the reference 
electron within the neighborhood of the bonded maximum. As 
the reference electron is removed from this region, the hole be­
comes more delocalized and its overlap with the core and 
neighboring bonded regions increases. For this reason one cannot 
maximize the contained Fermi correlation nor, equivalently, 
minimize the fluctuation in its population; any variation in the 
boundary of a valence domain causes the average electron pop­
ulation to increase faster than the contained Fermi correlation.4 

While the valence density is not physically localized into isolated 
pairs of electrons as is the core density, there is partial localization 
of the pair density as reflected in the value of 0.69 for the fraction 
of the total possible Fermi correlation for an average population 
of two electrons. Rather than a single electron pair, each bonded 
domain in methane contains an average of 1.3 distinct pairs of 
electrons as opposed to the 1.75 pairs which would be obtained 
if the electrons were fully delocalized over the entire valence 
region.28 Of equal importance is the observation that the Fermi 
hole for a reference electron at, or in the neighborhood of a bonded 
maxima in the VSCC of the carbon atom, attains its minimum 

(28) The number of distinct pairs formed from eight valence electrons is 
(8 X 7)/2 = 28. The chance of two electrons being in one-quarter of the total 
region is (l/4)(l/4) and the average number of pairs is 28 (1/16) = 1.75. 
The same result is obtained from the expression for the average number of 
pairs in a region JJ; it is (TV(JJ)2 + f(fi,J2))/2 where F(J2,fi) is the contained 
Fermi correlation. For one ctfi pair, F(Q,Q) = -1/4 - 1/4 = -1/2 since the 
total Fermi correlation of-1 for each electron is spread equally over all four 
regions. Hence the number of pairs equals (4 - l/2)/2 = 1.75. 

Figure 3. Contour maps of the Fermi hole density for pyramidal (a, b) 
and planar (c, d) ammonia. In maps a and b the reference electron is 
positioned at the nonbonded and bonded maxima, respectively, in the 
VSCC of the nitrogen atom. Note that the Fermi density is more con­
tracted toward the core in NH3 than it is in CH4, as are the maxima in 
its VSCC. Maps c and d are corresponding plots for planar ammonia. 
The density of the nonbonded Fermi hole, map c, is more delocalized than 
that for the pyramidal geometry, map a. In the planar geometry, con­
tours of the nonbonded Fermi hole density encompass the N-H inter­
nuclear axis. Clearly maps c and d overlap one another to a greater 
extent than do maps a and b; the electron pairs are more localized in 
pyramidal than in planar ammonia. 

values along the axes of the other C-H bonds. Recalling that the 
Fermi hole is a display of the spread or delocalization of the density 
of the reference electron, one sees that this density is concentrated 
along a tetrahedral or threefold axis to maximally avoid the three 
other corresponding bonded regions. 

The Fermi hole for the reference electron at a bonded maxima 
in the VSCC of the carbon atom has the appearance of the density 
of a directed sp3 hybrid orbital of valence bond theory or of the 
density of a localized bonding orbital of molecular orbital theory. 
Luken29 has also discussed and illustrated the properties of the 
Fermi hole. He has noted its insensitivity to the position of the 
reference electron when in regions of space where it has previously 
been shown that an electron pair is physically or partially 
localized.4 He has also noted the similarity in appearance of the 
density of a Fermi hole with that for a corresponding localized 
molecular orbital and has suggested that the form of the Fermi 
hole be used as a basis for the definition of a localized set of 
molecular orbitals. We emphasize here again that localized or-
bitals like the Fermi holes shown above for valence electrons are, 
in general, not sufficiently localized to separate regions of space 
to correspond to physically localized or distinct electron pairs. The 
fact that the Fermi hole resembles localized orbitals in systems 
where physical localization of pairs is not found further illustrates 
this point. 

It should be borne in mind that the resemblance of a Fermi 
hole density to that of a localized valence orbital is obtained only 
when the reference electron is placed in the neighborhood of a 
local maximum in the VSCC. The Fermi hole and hence the 
density of the reference electron are much more delocalized for 
general positions throughout the valence region (see Figures 2f 
and 6)). Localized molecular orbitals thus overemphasize electron 

(29) Luken, W. L. Croat. Chem. Acta 1984, 57, 1283. Luken, W. L.; 
Beratan, D. N. Theor. Chim. Acta 1982, 61, 265. 
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Figure 4. Contour plots of the Fermi hole density for the equilibrium 
geometry of CIFjO. In-plane nuclei are denoted by solid circles, pro­
jected positions of out-of-plane nuclei by open circles. The reference 
electron is at the bonded maximum to Fe in a, at the nonbonded maxi­
mum in b, at the bonded maximum to O in c, and at the bonded maxi­
mum to F, in d. The solid triangle denotes the position of the nonbonded 
maximum in plots a, c, and d. Plots a, b, and c are for the equatorial 
plane, and d is for the plane containing the Cl nucleus, the bonded 
maximum to Fa, and the nonbonded maximum. The nucleus of F, lies 
slightly out of this plane. The shaded areas indicate the regions of overlap 
of neighboring Fermi holes bonded by the -0.02-au contour. The shaded 
area in plot d is the overlap of the hole for the axial bonded maximum 
with the hole of the nonbonded maximum. This same overlap is slightly 
larger than the overlap of the nonbonded hole with the hole for a bonded 
maximum on Ft. 

localizability and they do not provide true representations of the 
extent to which electrons are spatially localized. 

There is partial localization of the valence density in methane. 
The condensation into four partially localized pairs of electrons 
arranged along four tetrahedral axes is a result of the combined 
effects of the ligand field and the Pauli exclusion principle as 
described above. Most important is that this partial localization 
of the pair density is reflected in the properties of the VSCC of 
the carbon atom which undergoes a corresponding condensation 
into four local concentrations of electronic charge. These prop­
erties of the pair density are not just the result of the tetrahedral 
symmetry of the ligand field in methane because, as we will now 
see, the Fermi hole exhibits the same behavior in the ammonia 
molecule. 

The Fermi holes obtained for a reference electron at the pos­
itions of a bonded and the nonbonded maxima in the VSCC of 
the nitrogen atom in ammonia are illustrated in Figure 3. This 
figure shows that there is a partial condensation of the pair density 
in ammonia to yield four partially localized pairs of electrons 
arranged along four axes which are approximately tetrahedrally 
directed. The pair density is less localized than in methane with 
the bonded and nonbonded domains containing respectively 61 
and 55% of the total possible Fermi correlation for average electron 
populations of two. There are, on the average, 1.38 distinct pairs 
of electrons in a bonded domain and 1.45 in a nonbonded domain 
of ammonia, and the pair density is further removed from the limit 
of localized pairs than it is in methane.4 As in methane, the pattern 
of delocalization of the density of a bonded or of the nonbonded 
reference electron is such as to maximally avoid the three other 
axes of pair localization. Thus in agreement with the postulated 
behavior of the electron pairs in the VSEPR model, the most 
probable arrangement of the partially localized pairs of electrons 
in ammonia is approximately tetrahedral, even though the ligand 
field is only threefold. Also in accord with the VSEPR model. 

Figure 5. Contour plots of the Fermi hole density for the ("3,, geometry 
of CIFjO in a symmetry plane: (a) reference electron at maximum of 
axial nonbonded maximu. (b) reference electron at bonded maximum of 
F, and (c) reference electron at bonded maximum of axial oxygen. The 
shaded areas indicate the overlap of the F bonded hole with the non-
bonded hole and with the bonded hole for O, as bounded by the -0.02-au 
contour. These areas arc greater than the corresponding areas in Figure 
4 for the equilibrium geometry. This is true, in particular, for the overlap 
of the holes for the nonbonded pair and the bonded pair on each of the 
fluorines, which extend up to the positions of the reference electrons. 

the Fermi hole for the nonbonded reference electron is laterally 
more diffuse than is that for a bonded reference electron, a 
property also reflected in the properties of the corresponding 
maxima in the VSCC of the nitrogen atom. 

Of equal importance to the VSEPR model is the observation 
that for geometries which, on the basis of the VSEPR model, do 
not maximize the distance between the electron pairs, the Fermi 
holes are less localized and exhibit greater overlap with the holes 
for neighboring domains. As an example, the Fermi hole for a 
reference electron on the threefold axis in planar ammonia, situated 
at one of the two symmetrically related nonbonded charge con­
centrations, is strongly delocalizcd over both sides of the plane 
of the nuclei (Figure 3). The density of the nonbonded reference 
electron clearly overlaps the holes for reference electrons placed 
at the bonded maxima more in this geometry than in the most 
stable pyramidal geometry. The Fermi holes for reference 
electrons placed al the corresponding bonded and nonbonded 
maxima in the VSCC of the central atom are most localized and 
least mutually overlapping for those geometries which in the 
VSEPR model maximize the interpair separations or, equina-
lently, maximize the separations between the local maxima in 
the VSCC of the central atom. 

It is important to emphasize that the correlation which exists 
between the properties of the Fermi hole and the VSEPR model 
are made most evident through the use of the properties of the 
Laplacian of the charge density. The correspondence is greatest 
when the position of the reference electron coincides with a local 
maximum in the VSCC of the central atom. The Fermi holes 
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Figure 6. Diagram a is a display of the Fermi hole density for the 
reference electron moved 0.2 au away from the critical point of the 
nonbonded maximum toward Fe. Aside from a slight increase in der­
ealization onto the oxygen, the distribution is essentially unchanged from 
that shown in Figure 4. For diagram c the reference electron is moved 
to the critical point on the boundary between the nonbonded and Fe 
bonded maxima. The distribution is now nearly equally delocalized over 
the F and Cl atoms. Diagrams b and d show corresponding behavior 
when the reference electron is displaced slightly off the critical point 
toward oxygen, and then to the critical point on the boundary between 
the nonbonded and the oxygen bonded maxima. The pair density is most 
localized when the reference electron is placed at the position of a charge 
concentration in the Laplacian distribution. 

are individually most localized for such a coincidence in position, 
and they are least overlapping for that geometry which maximizes 
the distances between the local maxima in the VSCC of the central 
atom. 

Representations of the Fermi hole in the two geometries of 
ClF3O are given in Figures 4 to 6 to demonstrate the generality 
of these observations. As in the previous plots, the most localized 
Fermi hole density is obtained when the reference electron is placed 
at the position of the corresponding maximum in charge con­
centration. In particular, this is once again true for the nonbonded 
charge concentration. As in the ammonia molecule, "lone pairs" 
as well as "bonded pairs" result from the partial condensation of 
the pair density. These most localized densities are arranged so 
as to maximize the mutual avoidance of the electron pairs they 
represent. Figure 6 demonstrates, for the nonbonded electron, 
that the Fermi hole and hence the density of the reference electron 
become very delocalized when the reference electron is moved 
away from the position of its local maximum in the VSCC. Only 
for the nonbonded position of the reference electron is the Fermi 

hole localized on Cl and has the appearance of a Cl centered 
orbital. For the bonded maxima associated with the oxygen and 
fluorine atoms, the patterns of derealization of the reference 
electron are centered primarily on the nuclei of these associated 
atoms. This behavior is consistent with the finding that only the 
nonbonded maximum lies totally within the VSCC of the Cl atom. 

The density of the reference electron is, in general, more de-
localized in the Cic geometry than in the equilibrium geometry. 
In the equilibrium geometry the only significant overlap of these 
most localized Fermi distributions, which are meant to model the 
charge distributions of the bonded and nonbonded electron pairs, 
is between the holes associated with the nonbonded maximum and 
those associated with the bonded maxima of the fluorine atoms, 
particularly that for F6 (Figure 4). In the less stable Civ geometry 
there is a much greater degree of overlap of all of the Fermi holes, 
particularly between those for the nonbonded electron and the 
bonded of the fluorine atoms (Figure 5). This latter observation 
reflects the behavior of the Laplacian distribution where it was 
noted that in this geometry the bonded maxima on the fluorines 
are particularly crowded by the nonbonded charge concentration. 

4. Conclusions 
This paper has shown that the number and relative positions 

of the local maxima in the VSCC of the A atom in a molecule 
AXn are a consequence of the partial localization of electron pairs 
in its valence region which results from the ligand field operating 
in concert with the Pauli principle. Clearly all of the postulates 
of the VSEPR model, including the effect of the Pauli principle 
on the most likely arrangement of electron pairs, are recovered 
in the properties of the VSCC of the central atom. A knowledge 
of these properties may be used to predict molecular geometries 
in a modified VSEPR model that requires only a single postulate, 
namely, that the most stable geometry of a molecule is that which 
maximizes the separations between the local maxima in the VSCC 
of the central atom. All other aspects of the VSEPR model are 
now firmly linked to theory and to the physical properties of the 
charge and pair densities of a molecular system. 
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Appendix 
The expression for the density of the Fermi hole obtained from 

a single determinantal function composed of orthogonal spin 
orbitals 0,- for a reference electron of a spin at /-j is 

j J i 

(A-I) 

where the sums run over the a spin orbitals only. The sum in the 
denominator of eq A-I is the density of a electrons at ru the 
quantity P1V1) of the text. It follows from eq A-I that ha(rur2) 
= -pa(/"i) when r{ = r2, corresponding to the removal of all density 
of a spin, and that the integral of ha(rur2) over r2 with r, fixed 
equals - 1 , corresponding to the removal of one electronic charge 
of a spin. 


